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Abstract
Efficient and precise genome editing requires a fast, quantitative, and inexpensive assay to assess genotype
following editing. Here, we present ICE (Inference of CRISPR Edits), which enables robust analysis of CRISPR
edits using Sanger data. ICE proposes potential outcomes for editing with guide RNAs, and then determines
which are supported by the data via regression. The ICE algorithm is robust and reproducible, and it can be
used to analyze CRISPR experiments within days after transfection. We also confirm that ICE produces accurate
estimates of editing outcomes across a variety of benchmarks, and within the context of other existing Sanger
analysis tools. The ICE tool is free to use and open source, and offers several improvements over current analysis
tools, such as batch analysis and support for a variety of editing conditions. It is available online at ice.synthego
.com, and the source code is available at github.com/synthego-open/ice.

Introduction
CRISPR is a precise programmable tool used for genome

editing, which involves a guide RNA (gRNA) that binds

to a genomic locus and a Cas nuclease that creates a

double-strand break (DSB) at the targeted site.1,2 After

a DSB occurs, non-homologous end joining (NHEJ) and/

or microhomology-mediated end joining (MMEJ) can

introduce insertions or deletions (indels) at the DSB.3,4

Alternatively, if a DNA donor template is provided, knock-

ing in a sequence of interest is possible through homology-

directed repair (HDR).5,6 While CRISPR offers precise

control over the site of the DSB, both the overall effi-

ciency of the edit (% non–wild type) and the particular

genotypes resulting from a CRISPR experiment are highly

variable and heterogeneous across cells within the same

experiment.7 This variability requires techniques to quan-

tify the post-editing outcomes in order to extract mean-

ingful results from CRISPR-based experiments.8

If the researcher cares only about the overall editing

efficiency of a CRISPR experiment, techniques such as

the T7 endonuclease assay 9 provide a fast and accessible

estimate. However, these methods have limited preci-

sion and reproducibility, and do not provide insight into

the specific genotypes in the edited population.10 Next-

generation sequencing (NGS) offers sequence-level reso-

lution and gold-standard sensitivity,10 but it is less widely

available, has a long turnaround time, and comes at a

high cost per sample in lower-throughput applications.

An alternative to NGS is the application of Sanger

sequencing to CRISPR genotyping. Sanger sequencing

is extremely fast and widely available, but the signal it

produces is a convolution of all genotypes in the sample.

Therefore, a computational tool is required in order to

infer the individual sequences within the population. Pre-

vious tools for deconvolving individual contributions

from ensemble Sanger data include base-calling meth-

ods,11–15 compressed sensing,16 and, most significantly,

TIDE (Tracking of Insertions and DEletions)17 and

DECODR (DEconvolution of COmplex DNA Repair).18

TIDE and DECODR are both effective tools at breaking

down convoluted Sanger reads into component parts

within a simple workflow, but both have shortcomings.

First, TIDE requires that users independently sequence

their donors for HDR edits, requiring additional time

at the bench. In addition, TIDE is not open source, and

many features, such as batch processing, require a license.

DECODR improves on TIDE by not only supporting

HDR edits without sequencing the donor but also by

supporting genotyping edits produced from multiple

guides, large deletions, and Cas12a edits.18 However,
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DECODR, like TIDE, is not open source and only sup-

ports batch analysis with edits that share the same guides

and donors.

Here, we present an improved algorithm, called ICE

(Inference of CRISPR Edits), which provides a unified

front-end for low- and high-throughput genotyping as

well as an open-source code base to serve the CRISPR

editing community. ICE can be used to analyze knockout

edits as well as donor-mediated editing. In this paper, we

describe the ICE algorithm and its outputs, as well as val-

idate it against two benchmarks: (1) a comparison with

NGS for donor and donor-less editing, and (2) an analy-

sis of single-nucleotide polymorphism (SNP) variants on

known cell populations. Moreover, we review ICE within

the context of TIDE and DECODR by contextualizing

the performance of each tool on a large number of

edits. The ease and flexibility of ICE enables experi-

menters to assess editing faster and cheaper, without com-

promising accuracy.

Methods
ICE algorithm
The ICE algorithm (Fig. 1) relies on two Sanger sequenc-

ing chromatogram trace files: one capturing the edited

population, and one unedited control. Following the

alignment of these sequences to the provided guide se-

quence, we generate a list of possible genotypes that

might result from a DSB at the inferred cut site based

on the known biological activity of Cas9. Because the

generation of possible genotypes is anchored to our a

priori understanding of Cas9, ICE may be less accurate

in genotyping other nucleases’ editing outcomes, includ-

ing base editors. These possible genotypes encompass all

frequent indels identified in the literature.7 Finally, a re-

gression algorithm is used to determine the linear combi-

nation of these possible genotypes that best explain the

observed edited sequencing trace. The relative frequency

of the resulting genotypes is inferred from the weights of

the regression model. These steps are described in more

detail below. This process shares many features of the

TIDE and DECODR algorithms with added improve-

ments to support more analysis cases with fewer demands

on the user.

Step 1: The two trace files, as ab1 files, are aligned

by finding a high-quality window of the control trace up-

stream of the cut site and trimming it to end at least 15 bp

upstream of the cut site. This alignment window is de-

fined as a region of the Sanger trace that has a windowed

average with Phred quality scores of >30. The align-

ment window in the control is then aligned against the

edited sample. By ignoring the poor-quality bases often

found at the very beginning of a Sanger trace, we

found that this alignment method is robust and scales

well for reliably processing many ab1 files without man-

ual tuning

Step 2: Next, to locate the edited region of the se-

quence used for the regression, we define the inference

window. The inference window starts 25 bp upstream

of the cut site and extends up to 100 bp downstream of

the cut site. The exact window length is calculated

by the quality score of the control sample. The length of

the inference window is limited due to the tendency of

Sanger sequencing quality to decrease over the length

of the read, which ultimately can diminish the precision

of the regression.

Step 3: In order to support analysis of a variety of gene

editing use cases, the edit proposal process can follow

two paths:

(1) Knockouts/NHEJ: the algorithm uses a default indel

range of deletions of up to 40 bp (20 bp from either

FIG. 1. Algorithm flow chart. The inputs to the
algorithm (top) are the control ab1 file, the sample ab1
file, the guide sequence(s), and an optional DNA donor.
The algorithm checks the data quality, generates edit
proposals, and then runs a non-negative, L1-regularized
regression to identify which edit proposal sequences are
most likely present in the sample. The program then
outputs the quality of the results, the percentage of the
sample population that has been edited, and the
identity of the edited sequences.
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side of the cut site) and insertions of up to 14 bp

to generate a list of potential edits (sequences

and traces). For deletions, the associated trace

data are deleted, while for insertions, a uniform

distribution of 25% for each base is inserted. The

trace data for other bases are copied from the

wild type.

(2) Knock-ins/HDR: the algorithm first generates edit

proposals as in (1) and then creates a HDR pro-

posal by aligning the provided donor template

with the control sequence and swapping any mis-

matched bases with that of the donor. This mimics

the expected outcome of perfect donor integration.

To achieve proper alignment, there must be at least

15 bp of target homology on both ends of the

template.

Step 4: After the edit proposal stage, a regression is

performed to infer the frequencies of each proposal se-

quence. In the regression, x is solved for in the equation

Ax = y, where A is a matrix composed of the simulated

traces and y is the edited sequencing trace. This regres-

sion finds a linear combination of the edit proposals

that best explains the observed trace of the edited sample.

We deviated from a standard regression solution in two

ways. First, we imposed a non-negative constraint to the

values of x, as negative prevalences of proposals are

meaningless. Second, we added an L1 (Lasso) regulariza-

tion penalty to the solution. Lasso regression mitigates

overfitting to the noise in Sanger data via L1 regulariza-

tion, producing more parsimonious results compared to

unregularized solutions. Following the regression solu-

tion, the relative frequency of each edit proposal is

extracted from the vector of weights of the regression

(x). Frequencies of individual edits are rounded to the

nearest whole percentage point to avoid overstating

the confidence of the model’s accuracy of contribu-

tion estimations. The correlation between the sum of

regression-weighted contributions and the observed edi-

ted sequencing trace (r2) measures the extent to which

the edit proposals can explain the edited sequencing trace.

A low r2 therefore represents an experiment where ICE

is unable to find a combination of indels that adequately

explains the observed experimental trace, and the ICE re-

sults may not be reliable. This is typically caused by a

nonspecific polymerase chain reaction (PCR) amplicon

or poor Sanger sequencing quality.

Program outputs
After ICE has completed a run, it outputs a summary

JSON and Microsoft Excel spreadsheet, as well as de-

tailed reports on the sequencing quality, alignments,

and results for each edit. The webtool additionally pro-

duces a variety of visualizations to help the user interpret

their results (Fig. 2).

Source code
The source code for ICE is publicly available at github

.com/synthego-open/ice, a docker container is on the

docker hub at synthego/ice, and a publicly accessible

webtool can be found at http://ice.synthego.com.

Using ICE
The user must first PCR amplify the genomic region

(with >100 bp flanking both sides of the cut site) on

both an edited sample, as well as an unedited control

sample. Following Sanger sequencing on both samples,

the user then provides the resulting ab1 files for edit

and control samples and the guide target sequence used

to generate the edit. If the edit was done with the pres-

ence of a donor, then the donor sequence can also be

provided to estimate the prevalence of donor integration

in the edited sample.

Following submission of the sequencing files and

guide’s target sequence, the algorithm will align the

sequences, locate the cut site, populate possible repair

genotypes, and infer the genotypes that best recapitulate

the edited Sanger chromatogram trace (for more details,

see Methods). The software outputs various files and

visualizations that help the user check the quality of the

editing reactions, verify the alignments, and interpret

the results (Fig. 2).

CRISPR editing of cell cultures
Editing was performed with chemically modified synthe-

tic guide RNAs (sgRNAs; Synthego, Redwood City, CA)

at 96 unique genomic locations in HEK293 cells. The

sgRNAs were complexed with wild-type SpCas9 (Aldev-

ron, Fargo, ND) at a molar ratio of 9:1 (180 pmol sgRNA/

20 pmol Cas9) to form ribonucleoproteins (RNPs) and

transfected into cells using a Nucleofector� 4D (Lonza,

Basel, Switzerland). Transfected cells were recovered

in normal growth medium, plated onto 96-well tissue cul-

ture plates, and incubated in humidified 37�C/5% CO2.

After 48 h, cells were lysed, and genomic DNA was ext-

racted from the cells using QuickExtract� DNA Extrac-

tion Solution (Lucigen, Middleton, WI) to each well of

the plate in preparation for sequencing (see below).

To specifically test ICE’s ability to estimate rates of

HDR accurately, we evaluated an additional 15 sites in

HEK293 cells using modified sgRNAs (Synthego) and

single-stranded DNA (ssDNA) donor templates (Eurofins

Genomics, Luxembourg). Each site was tested with three
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different ssDNA templates designed to knock in sequ-

ences of varying length (+0 [SNP], +14 or +36 bp) with

symmetric 40 bp homology arms (45 samples total).

sgRNAs (90 pmol) were complexed with 10 pmol Cas9

and then transfected along with 30 pmol ssDNA. All

other experimental details were the same as the donor-

less experiments.

Sanger sequencing and NGS
For all samples, PCR primers were designed to amplify

a 500–800 bp genomic DNA segment containing the

cut site. PCR was performed on lysed genomic samples

using Amplitaq Gold 360 (Thermo Fisher Scientific,

Waltham, MA), according to the manufacturer’s instruc-

tions. Sanger sequencing was then performed through a

FIG. 2. An example of the outputs from the ICE (Inference of CRISPR Edits) software for a guide targeting the
human gene RYK. (A) Trace file segments spanning the cut site from the control and the edited samples are
generated for every analysis. The guide target sequence provided by the user is underlined in black, and the
protospacer adjacent motif sequence is denoted by a dotted red underline in the control sample. Vertical dotted
lines denote the expected cut site. (B) Discordance for the edited (green) and control (orange) trace files. The
vertical dotted line marks the cut site. The alignment window marks the region of the traces with high Phred scores
that is used to align the edited and control traces. The inference window marks the region of the traces around the
cut site, which will be used to infer the change in sequence between the edited and control traces. Visualizing this
way, we can see that discordance is a robust signal of trace irregularity that can approximate the location and
prevalence of editing. (C) Insertion or deletion (indel) sizes along with their relative prevalence for this example, as
calculated by ICE. (D) Exact sequence calls and their relative prevalence for this example.
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commercial vendor (Sequetech, Mountain View, CA)

with one of the two primers used for amplification.

We additionally performed NGS on all single-guide

samples. For NGS samples, a 200–300 bp segment con-

taining the cut site was PCR amplified. The amplicons

were purified, quantified using NanoDrop�, and sent

to the Mass General Hospital (MGH, Boston, MA)

DNA core facility for their CRISPR sequencing service.

A summarization analysis was performed using the MGH

NGS data pipeline, which reported the sequences and

abundance of genotypes. Nine samples repeatedly failed

Sanger sequencing and were dropped from subsequent

analysis, leaving 92 donor-less samples and 40 donor-

mediated samples.

Single nucleotide variant analysis
To assess ICE’s ability to infer the prevalence of intro-

duced single nucleotide variants (SNVs), we sequenced

DNA mixtures that simulate a range of variant outcomes.

We amplified the locus surrounding SNP rs2072579 from

HEK293s (C/C) and the PGP1 iPSC line (G/G). Sanger

sequencing confirmed the samples are homozygous and

differ at only the SNP location. We then quantified the

amplicons with a Fragment Analyzer (AATI, Ankeny,

Iowa), mixed them at different molar ratios (5%, 10%,

20%, 40%, 60%, 80%, 90%, and 95% of PGP1 in the

mixture), and sequenced the mixed samples. The result-

ing sequencing data were then analyzed with ICE, simu-

lating an experiment in which the HEK293 cell line C is

edited to a G at SNP rs2072579 with efficiencies ranging

from 5% to 95%.

Comparison of ICE, TIDE, and DECODR
To compare ICE to TIDE and DECODR algorithms,17,18

we also analyzed all knockout samples via the TIDE and

DECODR websites using default parameters. The overall

editing efficiency and specific indel frequencies were

then compared between all three technologies. Moreover,

HDR-mediated knock-in was compared between TIDER,

ICE, and DECODR in a similar fashion. ICE and

DECODR take the same experimental inputs, but

TIDER requires an additional sequence file. For TIDER

analysis, we used the same input control and sample

Sanger file used in ICE, plus an additional reference se-

quence file containing the desired knock-in sequence.

The reference Sanger sequence was generated using the

protocol described in TIDER with the following modifi-

cations. Briefly, we generated three DNA fragments by

PCR for Gibson assembly: one of the donor sequence,

and two containing the genomic sequence between each

of the primers used in the control PCR to the donor,

plus 20 bp flanking the donor. All fragments were puri-

fied using AMPure XP bead cleanup kit (Beckman

Coulter, Brea, CA), pooled, and assembled with the

NEBuilder HiFi DNA Assembly Master Mix (New Eng-

land Biolabs, Ipswich, MA) according to manufacturer’s

instructions. The annealed mix was used as input DNA

for the final PCR with the same primer pair used in the

control and sample PCR reactions. However, due to pri-

mer design restrictions around the mutation site, we were

only able to generate a portion of the reference sequence

amplicons for TIDER analysis.

Results
Validation of ICE Results
We tested the ICE algorithm against a variety of bench-

marks in order to validate that it produces robust and

accurate estimates of editing outcomes.

Comparison of ICE with NGS
In order to verify that ICE produces accurate estimates of

indel frequency, we performed a head-to-head compari-

son between ICE and NGS across a variety of editing

types. As illustrated in Figure 3, the indel frequencies

reported by ICE (green bars) largely mirrored those

determined by NGS (black bars). This is true across

edit types, including NHEJ-mediated repair from single-

guide edits (Fig. 3A) and HDR-mediated repair for inser-

tions from a donor template (Fig. 3B). It should be noted

that any PCR-based sequencing technology (Sanger or

NGS) will preferentially introduce bias toward large

deletions because they are faster to amplify. The severity

of this bias will be a function of many experimental

conditions 19

While these results show anecdotally that there is a

correspondence between ICE and NGS, it is necessary

to perform more extensive comparisons to illustrate

the correlation more rigorously and to eliminate the pos-

sibility of systematic bias in ICE. To generalize these

results, we began by performing Sanger and NGS amp-

licon sequencing on 92 single-guide knockout edits. We

found a high correlation between the ICE and NGS

results for each indel size in all samples (r2 = 0.93,

Fig. 4A). Furthermore, we followed this with a separate

large-scale donor-mediated editing experiment. After

transfecting 40 samples with CRISPR components and

a DNA donor containing a SNP, +14 or +36, the ICE

and NGS analyses reported a mix of editing outcomes.

Some outcomes were the expected SNPs and insertions

resulting from HDR, whereas others were random indels

resulting from NHEJ/MMEJ. There was a strong correla-

tion between NGS and ICE indel frequencies for both

HDR and NHEJ/MMEJ editing outcomes, indicating

INFERENCE OF CRISPR EDITS FROM SANGER TRACE DATA 5

D
ow

nl
oa

de
d 

by
 M

ar
y 

A
nn

 L
ie

be
rt

, I
nc

., 
pu

bl
is

he
rs

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
2/

08
/2

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



that the frequency and identity of editing outcomes de-

rived by ICE closely match those determined via NGS

(Fig. 4B). ICE does tend to underestimate indel frequen-

cies slightly compared to NGS due to the regularization

step of the algorithm, although the effect size is small

(median discrepancy across all indel frequencies =
1.04%). To interrogate further whether there are system-

atic biases between ICE and NGS results, we also

analyzed whether the divergence of ICE and NGS indel

frequency is related to indel length, and we found only

minor effects (Supplementary Fig. S1).

Together, these results show that ICE and NGS pro-

duce very similar estimates of editing outcomes across

various edits of differing types.

SNV analysis
To validate ICE’s ability to measure edits resulting in

SNVs, we sequenced controlled mixtures of DNA that sim-

ulate a range of variant outcomes. We amplified the locus

surrounding SNP rs2072579 from HEK293s (which is ho-

mozygous C/C) and the PGP1 iPSC line (which is homo-

zygous; G/G), quantified the amplicons with a Fragment

Analyzer, mixed them at different molar ratios (5–95%

of PGP1 in the mixture), and sequenced the mixed sam-

ples. The resulting sequencing data were then analyzed

with ICE, simulating an experiment in which the

HEK293 cell line C is edited to a G. ICE estimates of

the percentage of SNV editing were strongly correlated

with the percentages expected by the molar ratios (Fig. 5).

FIG. 4. Correlation of ICE and NGS genotyping results for single-guide knockout and donor-mediated knock-in
experiments. (A) Pairwise comparisons of all indels resulting from ICE and NGS sequencing for 92 samples. The
correlation between indel frequencies from ICE and NGS is r2 = 0.96. (B) NGS results for homology-directed repair
(HDR) experiments were compared to ICE results for 40 samples. Each data point represents an indel for each
sample (HDR = green, NHEJ = gray). The overall correlation of NGS with ICE is r2 = 0.97.

FIG. 3. Sample comparison of indel contributions across edit types comparing ICE and next-generation
sequencing (NGS). The amplicon sequencing (black bars facing downward) and ICE results (green bars facing
upward) for indel distributions for three samples. In each instance the indels predicted by ICE closely resemble
those observed by NGS. (A) An example of a complex single-guide edit resulting in many genotypic outcomes.
(B) An example donor-mediated insertion edit showing both wild-type and a +14 insertion.
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Comparison of Sanger analysis tools
The figures above showcase the consistency of ICE as

validated by NGS. However, ICE exists in a landscape

with other Sanger analysis tools. To give insight into

this competitive landscape, we repeated the above analy-

sis using both TIDE and DECODR. First, we see that

overall editing efficiency performance with single-guide

edits versus NGS is consistent across algorithms (Supple-

mentary Fig. S2). Next, at the level of the individual indel

frequencies within these single-guide edits, we see that

TIDE and DECODR are consistent with NGS, similar

to ICE (Supplementary Fig. S3A and B). Summary sta-

tistics across single-guide experiments show that no one

algorithm is consistently superior to another for this

edit type for both mean-squared error (Supplementary

Fig. S3C) and correlation (Supplementary Fig. S3D)

with expected NGS indel frequencies. Within the single-

guide edits, there is a slightly higher frequency of low-

level indel contributions in NGS than the Sanger tools

(Supplementary Fig. S4). ICE and DECODR have the

least frequent low-level contributions due to the presence

of regularization within their regression steps. Finally,

we repeated a subset of our donor-mediated knock-ins

from Figure 4A with the modified TIDE algorithm for

including HDR outcomes, TIDER, and DECODR (Sup-

plementary Fig. S5). DECODR produces similar perfor-

mance to ICE versus NGS (Supplementary Fig. S5B).

However, TIDER failed on more samples compared to

ICE or DECODR (Supplementary Fig. S5C). Moreover,

the samples that TIDER did return for successfully

did not correlate with NGS as consistently as ICE or

DECODR (Supplementary Fig. S5B).

Discussion
Here, we present our software tool, ICE, which uses

Sanger sequencing data to quantify and identify geno-

types following CRISPR editing. ICE can analyze editing

outcomes for both donor (knock-in) and donor-less

(knockout) experiments. While NGS has better sensitiv-

ity and quantitation, Sanger sequencing remains more

widely accessible, faster, and cheaper for low-throughput

applications. Moreover, we show a high correlation be-

tween the genotypes derived by ICE and NGS, suggest-

ing that ICE can provide a reliable substitute in the

majority of cases. We additionally compared the per-

formance of other Sanger analysis tools (TIDE and

DECODR) to NGS and ICE. While all tools broadly

agreed in the case of knockout experiments, donor-

mediated results did not line up as well. In particular, es-

timates from TIDER did not correlate with NGS results

as well as ICE or DECODR. As the source code for

TIDER is not publicly available, it is difficult to specu-

late on the cause of the poor correlation. Considering

this is only a single data set, we are not inclined to believe

that this poor correlation is systematically true of TIDER,

but perhaps highlights a particular failure-mode for the

algorithm. Further comparisons of these approaches to

genotyping edited populations are necessary to provide

clarity.

ICE performs competitively with other Sanger analy-

sis tools in both knock-in and knockout applications.

As tools such as DECODR, TIDE, and ICE remain in ac-

tive development, it is clear the landscape of CRISPR

Sanger analysis will continue to evolve. However, ICE

continues to play a valuable role to the community as

hundreds of thousands of samples have successfully

been genotyped through the platform to date. ICE also

serves the community by remaining completely free to

use, with no features behind a paywall, and all source

code transparently available.

While the ICE workflow is suitable for most CRISPR

experiments, there are limitations to its capabilities. From

the Sanger trace, ICE assumes at each position the peak

signal for each base is linearly proportional to the molar-

ity of the base. However, the peak height and phasing for

a particular base in the Sanger trace is also a function of

the local sequence context. This could result in sequences

where Sanger signal ratios do not reflect the molar geno-

typic ratios of bases present at a given position. However,

the high correlation between ICE and NGS indicates that

this assumption does not affect ICE’s ability to predict

FIG. 5. ICE results are consistent with known molar
ratios of single nucleotide variant populations. ICE
variant results correlate with expected variant
percentages (r2 = 0.99). The traces on the right show the
Sanger chromatogram with the C/G single-nucleotide
polymorphism (SNP) underlined. The relative prevalence
of the SNP is clearly visible in the chromatogram, and
ICE correctly infers it.
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insertions and deletions. We suspect that because an indel

affects the signal for all bases downstream, the effect of

peak signal variance cancels out over many bases.

While we have shown that ICE can be used to provide

reasonable estimates of CRISPR editing outcomes using

Sanger sequencing, the precision of any method that relies

on Sanger sequencing will be limited by the noise that is

inherent to Sanger. This can make interpreting the precise

frequency of genotypes in a population particularly diffi-

cult, especially when the sequencing traces are of lower

quality. If a high degree of precision about the frequency

of a genotype in a population is required, then more sen-

sitive measures such as NGS are better options.

Finally, ICE can only estimate the frequency of repair

genotypes that it infers are likely, given the cut site (i.e.,

the proposal generation step). While the proposal genera-

tion methods in ICE have been shown to recapitulate

those produced by NGS, this means that ICE is not a com-

pletely unbiased genotyping method, and it is possible

that ICE may not recover all genotypes that exist in a pop-

ulation. Currently, we are developing an alternative to the

core ICE algorithm that accommodates deletions without

any of these proposal assumptions, enabling support for

a variety of alternative Cas proteins, large deletion de-

tection, and future gene-editing technologies yet to be

deployed. Scientists within the CRISPR community are

employing a growing arsenal of editing tools that produce

a wide range of repair outcomes. As Sanger sequencing

remains a core method for genotyping cells, ICE will

continue development to accommodate these use cases.

Conclusion
ICE offers a robust and scalable method for analyzing

CRISPR editing experiments. ICE can detect successful

edits in just a few days after transfection and has already

helped thousands of researchers with its public-facing

Web site and transparent codebase. We found that ICE

is able to offer results comparable to NGS but at a signif-

icant reduction in cost and time. The ICE workflow offers

several advantages over the current state-of-the-art alter-

natives by providing a robust and reproducible way to an-

alyze single-guide editing experiments. It also requires

less work to analyze HDR experiments because it does

not require a separate sequencing reaction for the

donor. Because ICE reduces the labor, cost, and time as-

sociated with CRISPR experiments, analysis is no longer

a limiting factor for precision genome editing.
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